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Abstract Eu(III)-9-acridinecarboxylate (9-ACA) complex
was synthesized and characterized by elemental analysis,
conductivity measurement, IR spectroscopy, thermal anal-
ysis, mass spectroscopy, 1H-NMR, fluorescence and ultra-
violet spectra. The results indicated that the composition of
this complex is [Eu(III)-(9-ACA)2(NCS)(C2H5OH)2] 2.5
H2O and the oxygen of the carbonyl group coordinated to
Eu(III). The interaction between the complex with
nucleotides guanosine 5′- monophosphate (5′-GMP),
adenosine 5′-diphosphates (5′-ADP), inosine (5′-IMP)
and CT-DNA was studied by fluorescence spectroscopy.
The fluorescence intensity of Eu(III)-9-acridinecarboxy-
late complex was enhanced with the addition of CT-
DNA. The effect of pH values on the fluorescence
intensity of Eu(III) complex was investigated. Under
experimental conditions, the linear range was 9–50 ng mL−1

for calf thymus DNA (CT- DNA) and the corresponding
detection limit was 5 ng mL−1. The results showed that Eu
(III)-(9-ACA)2 complex binds to CT-DNA with stability
constant of 2.41×104 M .

Keywords Eu(III)-9-acridinecarboxylate . Luminescent
probe . ds- DNA . Nucleotides

Introduction

DNA plays an important role in the life process because
it contains the genetic information related to cellular
function. The interaction of DNA with small molecular
compounds has great importance to understand the
reaction mechanisms of some anti-tumor, anti-viral drugs
and to design new DNA-targeted drugs. Currently, a lot
of studies report complexes of rare earth ions possess an
antitumor activity [1, 2]. In order to develop new
antitumor drugs, which specifically target DNA, it is
necessary to understand the different binding modes.
Basically, metal complexes interact with the double helical
DNA in either a non-covalent or a covalent way. A
number of techniques have been employed to study the
interaction of drugs with DNA [3–8], including fluores-
cence spectroscopy [9], UVspectrophotometry [10], elec-
trophoresis [11], nuclear magnetic resonance [12], and
electrochemical methods [13]. In recent years, there is a
growing interest in the absorption and fluorescence
investigations of interactions between anticancer drugs
and other DNA targeted molecules and DNA [14–16].
UV–vis absorption and fluorescence spectroscopy are
regarded as effective methods among these techniques
because they are sensitive, rapid and simple [17]. The
interaction of fluorescent metal complexes containing
multidentate aromatic ligands with DNA has gained much
attention. This is due to their possible application as new
therapeutic agents and their attractive emission properties
such as long lifetime; large Stokes’ shift, and line like
emission, which make them potential probes of DNA
structure and its conformation [7, 18]. Acridines have
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been a topic of interest for a long time owing to their
biological activities, numerous applications and the ability
to intercalate tightly to DNA helical structure [3]. Acridine
derivatives have found diverse usage such as antimalarial
[5], antiprotozoal [6], antibacterial [7] and anticancer
drugs [8, 14]. Owing to the high fluorescence quantum
yield and large binding constants to DNA [15], acridine
derivatives are well known in the field of development of
probes for nucleic acid structure and conformational
determination [19–21]. In this work, we used UV–vis
absorption and fluorescence spectroscopy to explore the
interaction between Eu(III)-(9-ACA)2 complex and calf
thymus DNA. We believe this will be helpful to further
understand the mechanism of interactions between DNA
and acridine’s rare earth metal complexes as well as
further understand acridine’s pharmacological effects. The
knowledge gained from this study should be useful for the
development of potential probes for DNA structure and
new therapeutic reagents for tumors. This work is a
continuation for the author’s work in the field of
developing new luminescent probes [22–29].

Experimental

Chemicals

9-Acridinecarboxylic acid, EuCl3·6H2O, adenosine 5′-
diphosphates (5′-ADP), guanosine 5′-monohosphates (5′-
GMP), and inosine 5′-monohosphate (5′-IMP) were pur-
chased from Sigma. Calf thymus DNA (CT-DNA) was
obtained from Sigma-Aldrich Biotech. Co., Ltd. They were
used without purification. The purity of CT-DNA was
checked by monitoring the ratio of absorbance at 260 to
280 nm. The ratio was 1.89, indicating that the CT-DNA
was free from protein [30].

Stock Solutions

Deionized double-distilled water and analytical grade
reagents were used throughout. CT-DNA stock solution
was prepared by dissolving the solid material in aqueous
tris-buffers (pH 7.2). The concentration of the CT-DNA
stock solution was determined by nanodrop absorption
spectrophotometer ND-1000 using the molar absorption
coefficient (6,600 M−1 cm−1) at 260 nm [31]. CT-DNA
solutions were stored at 4 °C for more than 24 h with gentle
shaking occasionally to get homogeneity and used within
2 days. The concentrations of the metal ion stock solutions
were determined complexometrically by ethylenediamine
tetracetic acid dissodium salt (EDTA) using suitable
indicators [32].

Measurements

Fluorescence spectra were recorded with Jasco-6300
spectrofluorometer equipped with a 150 W xenon lamp
source and quartz cells of 1 cm path length. The slit
widths for excitation and emission were set to 5.0 and
5.0 nm, respectively. All data and each spectrum were
the 5 nm/5 nm. All absorption spectra were performed
on a Perkin-elmer lambda 25 UV–vis spectrophotometer
equipped with quartz cells. The pH values were
adjusted by using Fisher account pH/ion meter model/
825 MP. Elemental analysis was carried out by
Elementar vario; thermogravimetric analysis was carried
out by (a Shimazdu TGDTG).1H NMR spectra were
performed with Varian UNITY-500 instrument; the infra-
red spectra were obtained in the 4,000–500 cm−1 region
by using Bruker Alpha with KBr discs. Melting point was
determined on a MEL-TEMP II apparatus (thermometer
uncorrected). The fluorescence spectra and intensities
were monitored at the fixed analytical emission wave-
length (λem=615 nm) of the complex in DMSO solution.
Fluorescence titrations were performed in a 1 cm quartz
cuvette by successive addition of DNA (1.35×10−6–3×
10−5 M) to solutions of 1.0×10−5 M Eu(III)-(9-ACA)2
complex. Before reacting Eu(III) complex with CT-DNA,
its solution behavior in buffer solutions at room temper-
ature was monitored by UV–vis and fluorescence meas-
urements for 24 h. Liberation of the ligand was not
observed under these conditions. These suggest that the
complex is stable under our experimental conditions.
The titration data was analyzed according to modified
Stern-Volmer equation to investigate the types of interac-
tion of Eu(III)-(9-ACA)2 complex with different DNA
concentrations.

Synthesis of Eu(III)-(9-ACA)2 Complex

The complex was synthesized by a method similar to
that reported by Hart and Laming [33]. EuCl3·6H2O
(1.35×10−3 mol) dissolved in 25 cm3 ethanol was treated
with a solution of potassium thiocyanate (5.40×10−3 mol)
in 75 cm3 ethanol in 1:4 molar ratio. The two solutions
were mixed thoroughly and the precipitate of potassium
chloride was removed by filtration. The filtrate was added
slowly with vigorous stirring to a solution of (9-acridine-
carboxylic acid) (5.40×10−3 mol) in 50 cm3ethanol (1: 4
molar ratio). Precipitate appeared immediately after mix-
ing the two solutions and raising the pH to 7.5. Stirring
overnight for 24 h to complete precipitation has been
performed. This product was collected by filtration,
purified by washing several times with ethanol and dried
in vacuum over P4O10.
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Results and Discussion

Characterization of the Eu(III)-(9-ACA)2 Complex

Elemental Analysis and Conductivity Measurement

Analytical data for the synthesized Eu(III)-(9-ACA)2 complex
is presented in Table 1. The elemental analytical data show
that the formulas of the complex may be [Eu (9-ACA)2(NCS)
(C2 H5OH)2] 2.5H2O as indicated in (Fig. 1). The complex is
brown colored and stable. It is soluble in DMF and DMSO
and insoluble in water, ethanol, benzene, diethyl ether and
tetrahydrofuran. Because of the insolubility of the complex in
suitable solvents we were unsuccessful in growing crystals for
single crystal X-ray structural studies. The molar conductance
measurement of the Eu(III)-complex was performed in
DMSO solution (with concentration of 1×10−4 M) at room
temperature. The value of molar conductance is 13 Sm2mol−1,
indicating that the complex is a nonelectrolyte.

Thermal Analysis

The thermal decomposition of the Eu(III)-(9-ACA)2 complex
was studied using the thermogravimetric (TG) and differen-
tial thermal gravimetry (DTG) techniques as shown in
(Fig. 2). The experiment was performed under N2 atmo-
sphere with a heating rate of 10 °C/min in the temperature
range of 25–800 °C. The TG curve exhibits many steps of
weight losses. The first mass loss is due to dehydration with
loss of non-coordinating water (2.5H2O; calculated=5.01%;
TG=5.22%). The release of water was accompanied by an
endothermic effect on the DTG curve observed at 53.3 °C.
The second weight loss peak occurred at 220 °C
corresponding to endothermic peak due to the removal of
thiocyanate (calculated=8.01%; TG=8.22%). The third
significant weight loss of 50.1% occurred from 350 to
520 °C corresponding to the decarboxylation and decompo-
sition of 9-ACA ligand (calculated: 52.37%; TG=53.52%).
The decomposition of the organic moiety was reflected by
strong endothermic effect on DTG curve with the maximum
at 497.8 °C. The remaining weight of 24.84% corresponds to
the percentage (26.95%) of Eu and O components, indicating
that the final thermal decomposition residue is Eu2O3.

Infrared Spectra

The IR spectral data of the ligand and its Eu(III)
complex were depicted in (Fig. 3). In the IR spectra of
the ligand 9-ACA, weak bands were observed at
3,445 cm-1 which can be attributed to the OH group. In
addition, the high intensity sharp bands at 1,651 and
1,608 cm−1 were assigned to C=O and C=C groups,
respectively. The band at 1,608 cm−1 confirms the
presence of the aromatic ring.

The Eu(III) complex exhibited broad weak intensity
band at about 3,370 cm−1, which was assigned to crystal
water and the coordinated ethanol molecule [34]. The high
intensity band appearing around 1,651 cm−1 in 9-ACA
which was ascribed to C=O, downshifted to 1,563 cm−1 in
the Eu(III) complex, this confirms that the oxygen atoms of
C=O coordinated to Eu(III) ions successfully. In the IR
spectra of the complex, the characteristic bands of the
carboxylate groups appeared at 1,571 cm−1 for the
antisymmetric stretching vibrations, νas(COO

-) and at
1,384 cm−1 for the symmetric stretching vibrations,
νs(COO

-), respectively. The separation (Δν) between
νas(COO

-) and νs(COO-) is 187 cm−1, indicating bidentate
coordination of the carboxylate groups in such complexes
[35, 36]. It was observed that the characteristic absorption
peak of the thiocyanate (NCS) was at about 2,051 cm−1

[37]. The complex showed medium intensity bands in the
region 413 cm−1 which was assigned to EuO modes.
According to the results above, the ligand coordinated to
the Eu(III) ions via the oxygen atoms of the carbonyl, and
hydroxyl groups.

Table 1 Elemental analytical data for the Eu(III)-9-ACA complex

Complex C(%) found (calc.) H (%) found (calc.) N (%) found (calc.) Eu (%) found (calc.)

[Eu (9-ACA)2(SCN)(C2H5OH)2] 2.5H2O 50.79 (50.1) 4.04 (3.44) 4.7 (5.3) 20.01 (19.21)

N
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CH
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Fig. 1 Suggested structure of Eu (III)-(9-ACA)2 complex
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Mass Spectroscopic Studies

The molecular ion peak (M+.) is observed at m/z 791,
which is ascribed to [Eu(9-ACA)2(NCS) (C2H5OH)2]
2.5H2O coinciding with the calculated value (791.26). In
addition to this the fragment ion peaks observed at m/z
equals 733 and 653 are due to M-NCS, and M-
(2EtOH+2.5 H2O), respectively. Since m/z 791 is an odd
number, there are odd nitrogen atoms present (3 nitrogen
atoms).

1H NMR Spectra

The 1H NMR spectra of 9-ACA and its Eu(III) complex were
measured and analyzed to confirm the complex formation.
The chemical shifts of the 1H NMR spectra in DMSO-d6

were presented as follows: 9-ACA (C10H6O4):
1H NMR

(DMSO-d6): 8.68 (H4), 7.83 (H5), 7.67 (H7), 7.38 (H8),
7.32 (H6); Eu(9-ACA)2(SCN)(EtOH)2:

1H NMR (DMSO-
d6): 8.53 (H4), 7.70 (H5), 7.57 (H7), 7.24(H8), 7.19 (H6). A
survey of the spectral data reveals downfield chemical shifts
of the protons in the Eu(III) complex spectrum relative to the
free ligand. The carboxylic proton peak is absent in the
spectrum of the complex due to the deprotonation of the
carboxylic group. On the basis of the elemental analysis,
thermal decomposition, IR, 1H NMR and mass spectra, the
suggested structure of the complex is consistent with that
shown in (Fig. 1).

Steady State Uv-Visible Absorption and Fluorescence
Spectra of Eu(III) –(9-ACA)2

The absorption spectra of 9-ACA and Eu(III)-(9-ACA)2-
complex have been investigated in DMSO as shown in

Fig. 2 TG and DTA curves of
Eu(III) complex

a) 9-Acridinecarboxylic  acid b) Eu(III)-9-acridinecarboxylate complex  

Fig. 3 The IR spectra of a ligand and b Eu(III) complex
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(Fig. 4). 9-ACA exhibits an absorption band with a
maximum at 361 nm, while its complex with Eu(III) ion
was slightly blue shifted to 357 nm with higher extinction
coefficient than that of 9-ACA. The fluorescence spectrum
of Eu(III)-(9-ACA)2 complex shown in (Fig. 5) was
measured in DMSO at room temperature . The spectrum
of 9-ACA and its Eu-complex exhibits two peaks at 413
and 432 nm. Fluorescence spectrum of Eu(III)-(9-ACA)2
complex shows the characteristic emission bands for Eu
(III) ions [38]. The emission band centered at 615 nm
(5D0→

7F2) is obviously higher than the other emission
bands at 590 nm (5D0→

7F1), 645 nm (5D0→
7F3), and

690 nm (5D0→
7F4), respectively.

The fluorescence spectra of Eu(III)-(9-ACA)2 in
DMSO containing various percentages of water have
been measured. Figure 6 shows that the fluorescence
intensity increases with an increase in the percentage of
water in DMSO in the region of ligand emission (413 and
432 nm). The increase of fluorescence quantum yield of
many heterocyclic organic molecules, e.g., quinoline and

isoquinoline including acridine, in protic solvents is
reported in the literature [39, 40]. On the other hand the
fluorescence intensity of Eu(III) increases with increasing
the water content passing through a maximum at 30%
water content. The characteristic emission bands of Eu
(III) were completely quenched above 60% water content.

Interaction of Eu(III)-(9-ACA)2 Complex with Different
Nucleotides and CT-DNA

Fluorescence Studies

The interaction of Eu(III)-(9-ACA)2 with CT-DNA,
5′-GMP, 5′-IMP and 5′-ADP in Tris–HCl buffer of pH 7.4
has been investigated by fluorescence measurement as
shown in (Fig. 7). The addition of nucleotides and DNA
enhances the emission bands of Eu(III)-(9-ACA)2 complex
through the intramolecular energy transfer from the exited
states of the ligands. On the other hand, CT-DNA and 5′-
GMP strongly quenched the fluorescence intensity of
ligand band in Eu(III)-complex, while 5′-ADP slightly
enhanced the fluoresce intensity of ligand. The ratio of the
relative fluorescence intensity If/I0 values which were
determined from the ratio of maximum fluorescence
intensity in presence and in absence of nucleotide or
DNA were listed in Table 2. The higher values for
fluorescence enhancement for Eu(III) band have been
observed in the presence of CT-DNA and 5′-ADP.

Effect of pH on the Fluorescence Intensity

The luminescence intensity of Eu(III)-(9-ACA)2-DNA
system is strongly dependent on pH values as shown in
(Figs. 8 and 9). The maximum luminescence intensity of
the system is reached at pH 7.4. Therefore, we choose pH
7.4 (0.1 M Tris – HCl buffer) for further experimental
studies .The maximum emission intensity of the complex
has been observed at 434 nm in the pH range 7.4–11.0,
while the broad bands at 456 and 474 nm have been
recorded at pH 3.0 as shown in (Figs. 8 and 9).
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Fig. 4 UV absorption spectra of a 9-ACA and b Eu(III)-(9-ACA)2
complex. Conditions: in DMSO, 25 °C, 9-ACA at 2×10-5 M, Eu(III)-
(9-ACA)2 at 2×10
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spectra of a 9-ACA and b Eu
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at 2×10-5 M, Eu(III)-(9-ACA)2
at 2×10-5 M, λex=290 nm
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Effect of DNA Concentration on Eu(III)-(9-ACA)2
Complex

UV–vis Absorption Spectra

Electronic absorption spectroscopy is employed to identify
the binding mode of DNA with metal complexes. Three
fundamentally different modes of DNA binding by metal
complex can be identified: non-specific external associa-
tion, groove binding in which the small molecules bound to
nucleic acids are located in the major or minor groove [41].
Long-range assembly on the molecular surfaces of nucleic
acids has been also observed so that the small molecules are
not related to the groove structure of the nucleic acids [1].
Among these interactions, the intercalative binding is
stronger than other two binding modes because the surface
of intercalative molecule is sandwiched between the
aromatic, heterocyclic base pairs of DNA [42]. It was
reported that the intercalating ability increases with the
planarity of ligands [43, 44]. The absorption spectra of the
9-ACA and its complexes in absence and presence of DNA
are given in (Fig. 10). The increase of DNA concentration
resulted in clear hyperchromicity in the absorption spectra
at the maximum absorbance with a slight blue shift from
358 to 355 nm. The hyperchromicity in π-π* transition and
the blue shift in the absorption spectra of Eu(III)-9-ACA
complex indicated the formation of some sort of binding
most probably groove binding between the Eu(III)-(9-
ACA)2 complex and DNA and involves a staking interac-
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Fig. 7 The fluorescence intensity of Eu (III)-(9-ACA)2 complex in
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Table 2 If/I0 ratio for the Eu(III)-(9-ACA)2 complex in the presence
and absence of DNA or nucleotides

Compounds If/I0 (613 nm) If/I0 (431 nm)

Eu(III)-(9-ACA)2-DNA 1.29 0.67

Eu(III)-(9-ACA)2-ADP 1.27 1.1

Eu(III)-(9-ACA)2-GMP 1.2 0.72

Eu(III)-(9-ACA)2-IMP 1.11 0.98
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tion between the aromatic chromophore and the base pairs
of DNA i.e. these changes are typical of complexes bound
to DNA through non covalent interaction [45]. Hyper-
chromism may result from the secondary damage of DNA
double helix structure [46].

The association constant of the formed complex (K)
between the Eu-complex and DNA is given by a Benesi-
Hildebrand plot [47].

1

ΔA
¼ 1

½Eu� complex�0
ð 1

Δ"
þ 1

K ½DNA�0 Δ"
Þ ð1Þ

Where ΔA is the difference between the absorbance of
Eu-complex in the presence and in the absence of DNA,
Δε the difference between the molar absorption coefficients
of Eu-complex and Eu-complex-DNA. [Eu-complex]0 and
[DNA]0 are the initial concentration of Eu-complex and
DNA, respectively. Figure 11 depicts a plot of 1/ΔA as a
function of 1/[DNA] for Eu-complex-DNA system. Good
linear correlations were obtained, confirming the formation
of a 1:1 Eu-complex: DNA. From the intercept and slope
value of this plot, K is evaluated at room temperature (25 °C).

The association constant at room temperature was determined
to be 2.5×104±100 M−1 through the regression fit with
correlation coefficient about 0.999.

The effect of DNA concentrations on the fluorescence
intensity of Eu (III) exhibited a pronounced change in
emission intensity as shown in (Fig. 12). The fluorescence
intensity of Eu(III) in the complex enhanced remarkably
with an increased DNA concentration.

The changes induced in the fluorescence intensity of Eu
(III) complex in the presence of different DNA concen-
trations can be analyzed to obtain the binding constant and
stoichiometry of the Eu(III)–(9-ACA)2–DNA system
according to the following equation [48]:

log
F0 � F

F

� �
¼ log K þ n log Q½ � ð2Þ

where K and n are the binding constant and the number of
binding sites, respectively. The Plot of log [(F0−F)/F]
versus log [Q] at room temperature gave a straight line
(Fig. 13). The slope of such curve is equal to n while the
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intercept to log K. The values of n approximately equal to
1, indicating that there is one binding site in Eu(lll) -9-ACA
for DNA. The association constant at room temperature was
determined to be 2.41 · 104 ± 100 M−1 through the
regression fit, which is very comparable to that calculated
from the absorption titration with correlation coefficient of
0.9999. It was observed that the negative sign for free
energy ΔG (25.1 Kcal/mol) means that the interaction
process of Eu(9-ACA)2 and DNA is spontaneous.

Calibration Curve for DNA

The luminescence enhancement of the Eu(III)-(9-ACA)2
complex was studied in different concentrations of DNA in

The use of Eu(III) chelates as luminescent indicators,
rather than conventional fluorophores, can enable highly
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Fig. 14 Calibration curve of DNA: effect of DNA concentration on
the fluorescence intensity of Eu(III)-(ACA)2 at 615 nm
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a luminescence titration experiment. Calibration graphs for
the DNA determination are shown in (Fig. 14). There was a
good linear relationship between the fluorescence enhance-
ment and DNA concentration. The linear ranges were 9–
50 ng for DNA. The limit of detection (LOD) was given by
the equation, LOD ¼ Ks=s, where K is a numerical factor
chosen according to the confidence level desired, σ is the
standard deviation of the blank measurements (n=7) and s
is the sensitivity of the calibration graph. It can be seen that
the detection limit is 5 ng mL−1for DNA with the
correlation coefficients 0.9999.



sensitive detection due to their specific properties. In
particular, the large Stokes’ shift of lanthanide chelates
(mostly Eu3+and Tb3+) easily permits selection of the
chelate specific emission from scattered excitation light,
even with filters. The narrow emission bands allow efficient
separation of several luminescence signals in multicolor
assays. Further, the very long luminescence life time
permits gated detection on a micro- to millisecond
timescale, to avoid typical short-lived non-specific back-
ground signals [49, 50]. In these systems, intense ion
luminescence originates from the intramolecular energy
transfer from the excited triplet-state of the ligand to the
emitting level of the lanthanide (antenna effect) [51].

Table 3 gives some probes for determination of nucleic
acids [52–62]. Eu(III)-(ACA)2 complex is more sensitive
than ethidium bromide which is carcinogenic.

Influence of Some Metal Ions and Foreign Substances
on the Binding Between Eu-(9-ACA)2 and DNA

There are a lot of coexisting substances which may lead to
foreign interference with DNA in physiological environ-

ment.In order to investigate the effect of possible interfer-
ence during our method certain concentrations of some ions
and several kinds of amino acids were added to the Eu-(9-
ACA)2–DNA system and the changes of fluorescence
intensity were recorded. The results are given in Table 4.
Some metal ions, such as Al3+, Pb2+, Ni2+, Mg2+ and Co2+

yielded slight interferences in DNA detection. Potential
interferences of calcium and magnesium ions at the 10–50
micromolar concentration level were considered - and
shown to have little effect on the fluorescence intensity.
We have carried out interference study in the presence of
more realistic concentrations of calcium and magnesium(in
the milimolar range) to mimic the physiological levels of
these ions. No pronounced increase in their interference has
been observed which my support the possibility of using
the method in physiological medium. The complete
investigation and microbiological studies and the effect of
our complex on different cancer lines are now under
consideration in our lab with the aim to try to discover a
new drug. The interferences of other coexisting substances
were negligible. We studied the effect of cofluorescence of
Gadolinium and Terbium on the fluorescence intensity of

Table 4 Tolerable concentra-
tion of coexisting substances in
the Eu(III)-(9-ACA)2 complex
(10 μM) with DNA (10.0 μM)

(−) quenching; (+) enhancing

Coexisting
substances

concentration
(μM)

Change of
luminescence
intensity (%)

Coexisting
substances

concentration
(μM)

Change of
luminescence
intensity (%)

Ca2+ 50 −0.1 NH4
+ 100 +1.0

Cd2+ 50 −0.1 Ni2+ 100 +3.4

Co2+ 100 −0.2 Pb2+ 100 −2.0
Cu2+ 100 −0.5 Mn2+ 50 −0.5
K+ 100 −2.0 Glucose 100 −0.1
Al3+ 75 −1.0 Tryptophan 50 −0.4
Mg2+ 50 −2.0 Terbium 50 −0.1
Po4

- 50 −0.6 Gadalunium 50 −0.1
Na+ 75 −0.5

Table 3 Common lumines-
cence probes for nucleic acid
determination

DNA Nucleic cid LOD
ng mL-1

References

Ethidium bromide nDNA 10 [52]

Hoechst 33258 nDNA 10 [53]

Methylene blue nDNA 28 [54]

Vitamin K3 nDNA, RNA 10, 26 [55]

La-8-hydroxyquinoline ctDNA, fsRNA 76, 68 [56]

Al-8-hydroxyquinoline ctDNA, fsRNA 24, 13 [57]

Tb-1,10-phenanthroline dDNA, RNA 100 [58]

Tb-BPMPHD-CTMAB nDNA 9 [59]

Eu-Benzoylacetone–CTMAB DNA, RNA 0.33, 0.99 [60]

Eu-oxytetracycline nDNA 11 [61]

PicoGreen dsDNA 0,25 [62]
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Eu(III)-(9-ACA)2-DNA system. There is no pronounced
effect on the fluorescence intensity. Interference of coexist-
ing substances is investigated according to a procedure
which includes the addition of these substances to the
standard samples containing 10 μM DNA. The results are
listed in Table 4. The data indicate that most of the metal
ions have no effect on the method at the concentration of 50
to 100 μM, i.e., this method had high tolerance limits.

Conclusions

The newly synthesized Eu(III)-(9-ACA)2 complex may be
considered as a new fluorescencent probe for detection of
DNA. This new probe has been applied to CT-DNA
detection and the experimental results suggested that this
method is simple, rapid, sensitive and stable.

The Eu(III) is coordinated through the hydroxylic
oxygen atoms of acridine carboxylic group via deprotona-
tion. The binding of the ligand to metal ion is confirmed by
the analytical, FTIR, mass, 1H-NMR spectra, and thermal
analysis. To evaluate its potential pharmaceutical activities,
the DNA-binding property was investigated by UV–vis
absorption and fluorescence spectra. The Eu(III)-(9-ACA)2-
complex displays a low fluorescence intensity for Eu(III),
but on binding to DNA the luminescence intensity
increases. The changes in the fluorescence intensity have
been used for the quantitative determination of DNA over a
large linear concentration range (9–50 ng mL−1) with LOD
of 5 ng mL−1. Hyperchromism was observed from the
absorption experiment and binding constants have been
determined with using both fluorescence and absorption
data. The experimental data confirmed the formation of 1:1
complexes of Eu(III)-(9-ACA)2 with DNA and the binding
processes were spontaneous.
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